skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "J. Bakita and J. Anderson"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Embedded and autonomous systems are increasingly integrating AI/ML features, often enabled by a hardware accelerator such as a GPU. As these workloads become increasingly demanding, but size, weight, power, and cost constraints remain unyielding, ways to increase GPU capacity are an urgent need. In this work, we provide a means by which to spatially partition the computing units of NVIDIA GPUs transparently, allowing oft-idled capacity to be reclaimed via safe and efficient GPU sharing. Our approach works on any NVIDIA GPU since 2013, and can be applied via our easy-to-use, user-space library titled libsmctrl. We back the design of our system with deep investigations into the hardware scheduling pipeline of NVIDIA GPUs. We provide guidelines for the use of our system, and demonstrate it via an object detection case study using YOLOv2. 
    more » « less